О проекте | Наши услуги 
PDA версия | Карта сайта 
Сегодня: понедельник, 29.04.2024 
Логин: (регистрация)  
Пароль: (забыли?)
Зачем нужна регистрация?
КомпанииОбъявленияНовостиСтатьиПресс-релизыМаркетГОСТыДокументыВыставкиРеклама
Главная страница     Написать письмо     Добавить в избранное
Поиск:    Расширенный поиск
Каталог компаний
Все компании
РУСВОЛЬТ
"ПРО развитие"
"Экопромстрой"
"Система"
HTF Светодиодное освещение
Расчёт веса кабеля
Сервис для расчёта веса кабеля на RusCable.Ru
Выставки
Все выставки
 Опрос

Какое на Ваш взгляд выставочное мероприятие наиболее эффективное?
Электро, Москва
ЭлектроТехноЭкспо, Москва
Энергетика и Электротехника, Санкт-Петербург
ЭлектроПромЭкспо, Ростов-на-Дону
Кабель Электромонтаж, Киев

 А знаете ли вы, что...

Волочение - деформирование металла протягиванием катаных или прессованных заготовок через отверстие с целью уменьшения их поперечного сечения или получения более точных размеров и гладкой поверхности.

 Курсы валют
06/06/18 1 USD = 61.9822 р. 0.0532
06/06/18 1 EUR = 72.5130 р. 0.0746
 Счетчики
Top.Mail.Ru
     


Статьи
Все статьи

Теория торсионной связи

Существующие сети и комплексы радио- и электросвязи являются характерной и неотъемлемой составляющей современной информационной цивилизации. Стремительно растущие информационные потребности общества привели к созданию суперсовременных систем обработки и передачи информации на основе новейших технологий. В зависимости от класса и типа систем передача информации осуществляется с помощью проводных, волоконно-оптических, радиорелейных, коротковолновых и спутниковых линий связи.

Однако в своем развитии радио- и электросвязь столкнулись с рядом непреодолимых ограничений физического характера. Многие частотные диапазоны перегружены и близки к насыщению. Ряд систем связи уже реализует шенноновский предел пропускной способности радиоканалов. Поглощение электромагнитных излучений природными средами требует гигантских мощностей в системах передачи информации. Несмотря на высокую скорость распространения электромагнитных волн, большие трудности возникают из‑за задержки сигнала в спутниковых системах связи, особенно в системах связи с объектами в дальнем космосе.

Решение этих проблем пытались найти путем применения и других, неэлектромагнитных полей, например гравитационных. Однако уже не один десяток лег это остается лишь областью теоретических рассуждений, так как до сих пор никто не знает, каким образом создать гравитационный передатчик. Известны попытки использования потока нейтрино с большой проникающей способностью для связи с подводными лодками, но они также не увенчались успехом.

В течение многих десятилетий вне поля зрения оставался другой физический объект – торсионные поля, о которых пойдет речь в данной статье. В ней излагается физическая природа торсионных полей и их свойства и на основе результатов экспериментальных исследований авторами прогнозируется в самое ближайшее время активизация усилий по созданию и развитию средств торсионной связи.

Торсионные поля (поля кручения) как объект теоретической физики являются предметом исследования с начала XX века и своим рождением обязаны Э. Картану и А. Эйнштейну. Именно поэтому один из важных разделов теории торсионных полей получил название – теория Эйнштейна – Картана (ТЭК). В рамках глобальной задачи геометризации физических полей, восходящей к Клиффорду и обоснованной А. Эйнштейном, в теории торсионных полей рассматривается кручение пространства-времени, в то время как в теории гравитации – риманова кривизна.

Если электромагнитные поля порождаются зарядом, гравитационные – массой, то торсионные поля – спином или угловым моментом вращения. При этом следует отметить, что имеется в виду классический спин, а не магнитный момент. В отличие от электромагнитных полей, где их единственными источниками являются заряды, торсионные поля могут порождаться не только спином. Так, теория предсказывает возможность их самогенерации, а эксперимент демонстрирует их возникновение от криволинейных фигур геометрической или топологической природы.

В начале XX века в период ранних работ Э. Картана в физике не существовало понятия спина. Поэтому торсионные поля ассоциировались с массивными объектами и их угловым моментом вращения. Такой подход порождал иллюзию, что торсионные эффекты – это одно из проявлений гравитации. Работы в рамках теории гравитации с кручением ведутся и в настоящее время. Вера в гравитационный характер торсионных эффектов особенно усилилась после опубликования в период 1972‑1974 гг. работ В. Копчинского и А. Траутмана, в которых было показано, что кручение пространства-времени приводит к устранению космологической сингулярности в нестационарных моделях Вселенной. Кроме того, тензор кручения имеет множитель в виде произведения Gh (здесь G и h – соответственно гравитационная постоянная и постоянная Планка), который по существу является константой спин‑торсионных взаимодействий. Отсюда прямо следовал вывод, что эта константа почти на 30 порядков меньше константы гравитационных взаимодействий. Следовательно, даже если в природе и существуют торсионные эффекты, то они не могут быть наблюдаемы. Такой вывод почти на 50 лет исключил все работы по экспериментальному поиску проявлений торсионных полей в природе и лабораторных исследованиях.

Лишь с появлением обобщающих работ Ф. Хеля, Т. Киббла и Д. Шимы стало ясно, что теория Эйнштейна – Картана не исчерпывает теории торсионных полей.

В большом количестве работ, появившихся вслед за работами Ф. Хеля, где анализировалась теория с динамическим кручением, т. е. теория торсионных полей, порождаемых спинирующим источником с излучением, было показано, что в лагранжиане для таких источников может быть до десятка членов, константы которых никак не зависят ни от G, ни от h – они вообще не определены. Отсюда вовсе не следует, что они обязательно большие, а торсионные эффекты, следовательно, наблюдаемы. Важно прежде всего то, что теория не требует, чтобы они были обязательно весьма малыми. В этих условиях последнее слово остается за экспериментом.

В дальнейшем было показано, что среди физической феноменологии есть много экспериментов с микро- и макроскопическими объектами, в которых наблюдается проявление торсионных полей. Ряд из них уже нашли свое качественное и количественное объяснение в рамках теории торсионных полей.

Второй важный вывод, вытекающий из работ Ф. Хеля, состоял в понимании того, что торсионные поля могут порождаться объектами со спином, но с нулевой массой покоя, как, например, у нейтрино, т. е. торсионное поле возникает вообще в отсутствие гравитационного поля. Хотя и после этого активно продолжаются работы по теории гравитации с кручением, тем не менее, расширилось понимание роли торсионных полей в качестве столь же самостоятельного физического объекта, как электромагнитные и гравитационные поля.

В современной интерпретации ФВ представляется сложным квантовым динамическим объектом, который проявляет себя через флуктуации. Стандартный теоретический подход строится на концепциях С. Вайнберга, А. Салама и Ш. Глешоу.

Однако на определенном этапе исследований было признано целесообразным вернуться к электронно-позитронной модели ФВ П. Дирака в несколько измененной интерпретации. Учитывая, что ФВ определяется как состояние без частиц, и исходя из модели классического спина как кольцевого волнового пакета (следуя терминологии Белинфанте – циркулирующего потока энергии), будем рассматривать ФВ как систему из кольцевых волновых пакетов электронов и позитронов, а не собственно электронно-позитронных пар.

Формально при спиновой скомпенсированности фитонов их взаимная ориентация в ансамбле в ФВ, казалось бы, может быть произвольной. Однако интуитивно представляется, что ФВ образует упорядоченную структуру с линейной упаковкой. Идея упорядоченности ФВ, видимо, принадлежит А. Д. Киржницу и А. Д. Линде. Было бы наивно усматривать в построенной модели истинную структуру ФВ. Это означало бы требовать от модели больше, чем на то способна искусственная схема.

Рассмотрим наиболее важные в практическом отношении случаи возмущения ФВ разными внешними источниками. Это поможет оценить реалистичность развиваемого подхода.

1. Пусть источником возмущения является заряд q. Если ФВ имеет фитонную структуру, то действие заряда будет выражено в зарядовой поляризации ФВ. Этот случай хорошо известен в квантовой электродинамике. В частности, лэмбовский сдвиг традиционно объясняется через зарядовую поляризацию электронно-позитронного ФВ. Такое состояние зарядовой поляризации ФВ может быть интерпретировано как электромагнитное поле (Е-поле).

2. Если источником возмущения является масса, то, в отличие от предыдущего случая, когда мы столкнулись с общеизвестной ситуацией, здесь будет высказано гипотетическое предположение: возмущение ФВ массой будет выражаться в симметричных колебаниях элементов фитонов вдоль оси на центр объекта возмущения. Такое состояние может быть охарактеризовано как гравитационное поле (G-поле).

3. Когда источником возмущения является классический спин, можно предполагать, что действие классического спина на ФВ будет заключаться в следующем: спины фитонов, совпадающие с ориентацией спина источника, сохраняют свою ориентацию, а те спины фитонов, которые противоположны спину источника, под действием источника испытают инверсию. В результате ФВ перейдет в состояние поперечной спиновой поляризации. Это поляризационное состояние можно интерпретировать как спиновое (торсионное) поле (5-поле) или Г-поле, порождаемое классическим спином. Сформулированный подход созвучен представлениям о полях кручения как конденсате пар фермионов.

Поляризационные спиновые состояния SR и SL противоречат запрету Паули. Однако согласно концепции М. А. Маркова при плотностях порядка планковских фундаментальные физические законы могут иметь другой, отличный от известных вид. Отказ от запрета Паули для такой специфической материальной среды, как ФВ, допустим, вероятно, не в меньшей мере, чем в концепции кварков.

В соответствии с изложенным подходом можно говорить, что единая среда – ФВ может находиться в разных «фазовых», точнее, поляризационных состояниях – EGS‑состояниях. Эта среда в состоянии зарядовой поляризации проявляет себя как электромагнитное поле Е. Эта же среда в состоянии спиновой продольной поляризации проявляет себя как гравитационное поле G. Наконец, та же среда – ФВ в состоянии спиновой поперечной поляризации проявляет себя как спиновое (торсионное) поле S. Таким образом, EGS-поляризационным состояниям ФВ соответствуют EGS-поля.

Все три поля, порождаемые независимыми кинематическими параметрами, являются универсальными, или полями первого класса в терминологии Р. Утиямы; эти поля проявляют себя и на макро- и на микро-уровне. Развитые представления позволяют с некоторых общих позиций подойти к проблеме, по крайней мере, универсальных полей. В предлагаемой модели роль единого поля играет ФВ, поляризационные состояния которого проявляются как ECS-поля. Здесь уместно вспомнить слова Я. И. Померан-чука: «Вся физика – это физика вакуума». Современная природа не нуждается в «объединениях». В природе есть лишь ФВ и его поляризационные состояния. А «объединения» лишь отражают степень нашего понимания взаимосвязи полей.

Ранее неоднократно отмечалось, что классическое поле можно рассматривать как состояние ФВ. Однако поляризационным состояниям ФВ не придавалось той фундаментальной роли, которую они в действительности играют. Как правило, не обсуждалось, какие поляризации ФВ имеются в виду. В изложенном подходе поляризация ФВ по Я. Б. Зельдовичу интерпретируется как зарядовая (электромагнитное поле), по А. Д. Сахарову – как спиновая продольная (гравитационное поле), а для торсионных полей – как спиновая поперечная поляризация.

Для решения задач связи наиболее значимыми из указанных свойств торсионных полей (торсионных волн) являются следующие:
– отсутствие зависимости интенсивности торсионных полей от расстояния, что позволяет избежать больших затрат энергии для компенсации потерь за счет их ослабления в соответствии с законом обратных квадратов, как это имеет место для электромагнитных волн;
– отсутствие поглощения торсионных волн природными средами, что исключает необходимость дополнительных больших затрат энергии для компенсации потерь, характерных для радиосвязи;
– торсионные волны не переносят энергию, они действуют на торсионный приемник только информационно;
– торсионные волны, распространяясь через фазовый портрет голографической структуры ФВ, обеспечивают передачу сигнала от одной точки пространства к другой нелокальным способом. В таких условиях передача может осуществляться только мгновенно со скоростью, равной бесконечности;
– для нелокального способа взаимодействия точек в голографической среде через их фазовый портрет не имеет значения факт поглощения сигнала на прямой линии, связывающей две точки такой среды. Связь, основанная на таком принципе, не нуждается в ретрансляторах.

Таким образом, в первом приближении можно сказать, что передачу информации по торсионному каналу связи можно реализовать на любые расстояния и через любые среды сколь угодно слабыми торсионными сигналами.

Геннадий ШИПОВ

Источник: http://www.eprussia.ru



Главная страница О проекте Обратная связь Ссылки Контакты Сотрудничество Отзывы Желтая страница


Медиахолдинг РусКабель

Медиахолдинг «РусКабель» — ведущее информационно-рекламное агентство энергетической отрасли, объединяющее под своим брендом популярные издания и мероприятия. В рамках Медиахолдинга осуществляется многогранная деятельность, начиная от оказания информационно-рекламных услуг посредством подконтрольных площадей и издательской деятельности до проведения масштабных конференций международного уровня.